

中华人民共和国国家计量检定规程

JJG 212-2003

色 温 表

Colour Temperature Meters

2003 - 11 - 12 实施

色温表检定规程

Verification Regulation of Colour Temperature Meters

JJG 212—2003 弋替 JJG 212—1990

本规程经国家质量监督检验检疫总局于 2003 年 05 月 12 日批准,并自 2003 年 11 月 12 日起施行。

归口单位:全国光学计量技术委员会

起草单位:中国测试技术研究院

本规程主要起草人:

张艳华 (中国测试技术研究院)

谢兴尧 (中国测试技术研究院)

目 录

																										•••••		•	,
2	引	用:	文献		••••			• • • •	• • • •	••••	• • • • •		•••	••••	• • •		••••	••••	• • • • •	• • • • •		••••					•	(1	.)
3	櫻	述		• • • •	••••		•••			••••	••••		•••	• • • •	• • •	• • • •	• • • •	••••	• • • •		• • • •		• • • •		····	•••••	•••	(1	.)
4	ìţ	量,	生能	要	求·	•••		• • • •		••••	••••	٠	• • •	• • • •			• • • •	••••	• • • •			••••		• • • •		•••••	•••	(1	.)
4.1		示	直重	复	性·	•••	•••		••••	• • • •	••••		• • •	• • • •	• • • •		••••	••••	• • • •		• • • •	••••	• • • •			••••	•••	(1	.)
4.2		线怕	生偏	差	••••	•••	•••	• • • •		• • • •		•••	• • • •		• • •	• • • •	••••	••••	• • • •		• • • •	••••		• • • •		••••	• • •	(1	.)
4.3		方I	句性	偏	差·	•••	• • •			• • • •	••••		• • • •	• • • •			••••		• • • •		• • • •	• • • •	• • • •		••••		•••	(1	.)
4.4																										• • • • •			
4.5		年和	急定	性	••••	•••	•••			••••	••••			• • • •		• • • •		••••	• • • •		• • • •	• • • •			••••		•••	(2	;)
5	通	用	技术	要	求·		•••	• • •	•••	• • • •	••••	• •	• • • •		• • •	• • • •	••••	• • • • •	• • • •		• • • •	••••				••••		(2	!)
6	H	量:	器具	控	制·			• • •	• • • •	••••	••••		• • • •	• • • •	• • •	• • • •	••••	••••	• • • •	••••		••••	•••	• • • • •	••••	• • • • •	•••	(2	;)
6.1		检测	巨条	件	••••	···	•••	• • • •	•••	••••	• • • •	• •	• • • •		• • •	• • • •		••••	• • • •		• • • •	••••		• • • •		••••		(2	!)
6.2		检》	足项	目	••••	•••	••••	• • • •	•••	• • • •	••••				• • • •		• • • •		• • • •	· · · · •	• • • •	• • • •	••••	• • • •	• • • •	• • • • •	•••	(3	()
6.3		检算	巨方	法	••••	···	••••	• • • •	•••	••••	••••	• •	• • • •		• • • •	• • • •		••••	• • • •		• • • •	••••	• • • •	• • • •	• • • •	•••••	• • •	(3	()
6.4		检算	已结	果	的友	ĻΙ	里 …	• • • •	•••	••••		•••	• • • •			• • • •	••••	• • • •	• • • •		• • • •	••••		• • • •	••••	•••••	• • •	(4	.)
6.5		检测	き周	期		•••			•••		••••						• • • •		• • • •		• • • •			• • • •		• • • • •	•••	(5	i)
附录	₹.	A	升沿	显波	光	片	与	标准	崖灯	组	合,	,	透.	射)	光タ	计 有	温	度的	的计	算	•••	• • • •	• • • •	• • • •	••••	• • • • •	•••	(6	;)
附录	2	В	检定	ЕŪ	书	格	式	(같	宇 面	i)	••				• • • •	• • • •		• • • •	• • • • •						• • • •		•••	(8	()
附身	k	С	不确	角定	度	分	析	•••	• • • •	••••	••••		· · · ·	• • • •		• • • •	• • • •	••••	• • • • •		• • • •	••••	• • • •	• • • •	••••	• • • • •	•••	(9	(ا
附系	7	D	相	€ij	鲷																						•••	(1	1)

色温表检定规程

1 适用范围

本规程适用于色温表(计)的首次检定、后续检定和使用中的检验。定型鉴定、样 机试验中对计量性能的要求可参照本规程执行。

2 引用文献

CB 5702—1985《光源显色性评价方法》 JJG 213—2003《分布(颜色)温度标准灯检定规程》 引用时,应注意使用上述文献的现行有效版本。

3 概述

色温表是用双色比法测量光源在可见波长范围内的(光谱)分布温度的便携式仪表。使用的双色比通常为蓝红比(b/r)和绿红比(g/r)。仪表主要由探头部分(包括红、绿、蓝滤光器、光探测器)和电气显示(仪表)部分所组成。按显示方式可分为数字式和指针式两种。它主要用于测量摄影、摄像用照明光源及其他现代光源的分布温度。

色温度和分布温度在概念上有严格的区别,"色温表"也是一种习惯叫法。不过,对于光谱功率分布与黑体相近的光源,如白炽钨灯,它的色温值和可见波长范围的分布温度值在数值上相差很小,在通常的测量误差范围内,可视为相同;然而对于光谱功率分布与黑体相差较大的光源,如荧光灯或其他类放电灯等,则它们的数值可能相差很大。

因色温表的测量原理是基于最简化的双色比法, 所以它只适用于测量光谱功率分布与黑体相近的光源。

4 计量性能要求

色温表在 CIE - A 标准光源 (即 2 856 K) 照射下,用(b/r) 挡测量,各有关性能应分别满足下列要求。

4.1 示值重复性

在 500 lx 照度下重复测量三次,示值的极差不超过 20 K。

4.2 线性偏差

在 250 lx 和 1000 lx 光照度下分别测量, 其示值变化不超过 20 K。

4.3 方向性偏差

在 500 lx 照度下考查,当人射光偏离垂直照射方向 ± 15°时,示值变化不超过 20 K。

4.4 示值偏差

色温表在 (2000~9000) K 范围内, 其示值偏差, 换算为温度倒数之差, 对 (b/r)

挡不超过 4 Mireds (1 Mireds = 1 × 10⁻⁶ K⁻¹), 对 (g/r) 挡不超过 6 Mireds。

4.5 年稳定性

示值的年变化量在 2 856 K 点不超过 60 K。

5 通用技术要求

色温表的机械、电气部分应工作正常,转动机构必须运转灵活,位置重复性好,显示部分清晰,外观完整无损,对测量头具有滤光片互换机构的色温表,还要求其定位准确可靠。每只表应标明其型号、出厂编号、生产厂家、生产日期等。

6 计量器具控制

- 6.1 检定条件
- 6.1.1 检定设备
- 6.1.1.1 光度测量装置

主要包括 2~3 m长的导轨、灯架、灯座、安装色温表的云台、升色温滤光片夹具及与标准灯配套的孔径光阑和支撑座。所有部件表面呈黑色; 灯架要能进行升降、左右平移、转动及俯仰调节; 光阑的孔径大小要适宜, 不能遮挡灯丝任何部位的发光。

6.1.1.2 检定用标准光源

量值(2000~3000)K:二级分布温度充气钨丝标准灯,不少于二只;

量值(3000~3400)K:二级分布温度石英溴钨标准灯,不少于二只;

量值 > 3 400 K: 用上述标准灯与不同厚度升色温滤光片组合后的透射光。

6.1.1.3 升色温滤光片

升色温滤光片,建议采用 SSB - 200 型等蓝色玻璃滤光片。

当检定值范围为 (3 500~5 500) K 时,采用厚度较薄(如 2.2 mm)的升色温滤光片;

兰 当检定值范围为 (5 500~9 000) K 时,采用厚度较厚(如 3.7 mm)的升色温滤光片;

升色温滤光片的大小,应以其透射光束能全部均匀照射色温表的整个探头为宜。

升色温滤光片的光谱透射比 $\tau(\lambda)$,用调整良好、具有双单色器色散及双光路系统的光谱光度计测量,其测量不确定度 $U(\tau)$ 应不超过0.004 (k=2)。滤光片与标准灯组合后透射光的分布温度值,应以实际测量与计算的结果为准,计算方法见附录 A。

6.1.1.4 标准光源的供电及电测设备

可用电子交流稳压器或直流稳定电源,其不稳定度每 10 min 输出电流(或电压)的变化应小于 0.2%;直流(或交直流两用)电流表、电压表各一只,准确度应不低于 0.2级。点燃标准灯时应以控测灯电流为主。电压测量线应单独从灯头两端引出,测量电流时应先断开电压表。使用直流电源的电测线路,参见 JJG 213—2003《分布(颜色)温度标准灯检定规程》的相关图示;使用交流电源的电测线路参见图 1。

6.1.2 检定环境条件

实验室应为暗室,房间温度应为 (23±2)℃,相对湿度 < 85%RH。

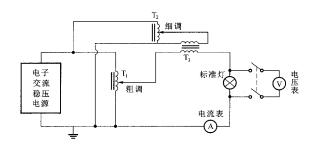


图 1 交流供电的电测线路 T., T.—交流调压变压器; T₂—220V/6V 固定隔离变压器

光路周围应用黑绒布作围帐,避免背景杂光射人到色温表探头上,特别应注意避免 带色背景的反射杂光。

6.2 检定项目: 见表 1。

检定项目	首次检定	后续检定	使用中的检验		
外观检查	+	+	+		
示值重复性	+	+	+		
线性偏差	+	+	-		
方向性偏差	+	+	-		
示值偏差	+	+	+ (仅2856 K点		
年稳定性	_	+	_		

表 1

6.3 检定方法

6.3.1 外观检查:用目测和手动方法对色温表进行外观检查,应符合第5章要求。

6.3.2 安装与调试。

首先将灯架、光阑、升色温滤光片夹具、色温表及云台等(按图 2 所示)安装在水平导轨上;带白色洁净手套,将标准灯安装在灯架上、灯头在下,小心固紧。

将色温表按使用说明书要求调整好后安装在云台上,将升色温滤光片擦干净,小心 安装在夹具上(≤3 400 K时,不用升色温滤光片)。

调整灯丝平面,光阑孔径,升色温滤光片及色温表探头诸中心在同一水平轴线上,并与自身所在平面垂直。然后将标准灯点燃在给定分布温度值的电流下,对 BDQ 型灯预热 (5~8)min; 对溴钨灯预热 (10~15)min。

检定时应注意杂光的屏蔽,特别是外部带色背景的反射杂光。检查方法:用黑色挡

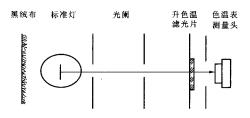


图 2 检定色温表的光路示意图

板遮掉标准灯的直射光,此时,色温表探头处的光照度应为零。

6.3.3 示值重复性测量

将标准灯恒定点燃在 2~856~K 的电流下,改变色温表到标准灯的距离,使测量头处的光照度在 500~k 左右,用 (b/r) 挡重复测量三次,示值的极差应符合 4.1 的要求。

6.3.4 线性偏差测量

改变表到标准灯的距离,使测量头处的光照度在 250 lx 和 1 000 lx 下,用 (b/r) 挡分别重复测量三次,其示值平均值的差值应符合 4.2 的要求。

6.3.5 方向性偏差测量

将标准灯恒定点燃在 2 856 K 的电流下,改变表到灯的距离,使测量头处的光照度在 500 lx 左右,在水平面内转动云台,使测量头平面法线正对标准灯、偏左 15°、偏右 15°时,用(b/r) 挡分别重复测量三次,其偏左、偏右时的平均示值与正对时的平均示值的差值,应符合 4.3 的要求。

6.3.6 示值检定

检定点的选取: 4000 K以下,每隔200 K检定一点; (4000~9500) K范围内,每隔500 K检定一点。检定色温表的(b/r)挡时,用蓝、红两波段范围所确定的分布温度值;检定(g/r)挡时,用绿、红两波段范围所确定的分布温度值。

波段范围的划分如下: 蓝: $(410 \sim 500)$ nm,绿: $(505 \sim 590)$ nm,红: $(595 \sim 670)$ nm。计算时的波长间隔取 5 nm。

检定量值在(2000~3000) K 范围时,用二级充气钨丝标准灯;在(3000~3400) K 范围时,用二级石英溴钨标准灯;>3400 K 时,用上述标准灯与不同厚度升色温滤光片组合后的透射光。检定时应按色温表使用说明书规定的操作方法进行。每个检定点重复三次,取平均值为结果,并按式(1)计算其示值偏差的 Mireds(μrd)值,应符合4.4的要求。

$$\Delta M = (\frac{1}{T_{\rm I}} - \frac{1}{T_{\rm S}}) \times 10^6 \tag{1}$$

式中: T_1 ——色温表的示值, K;

 T_s ——标准值,K。

6.4 检定结果的处理

首次检定不计算色温表的年稳定性。待经周期检定后,再计算出 2 856 K 点下示值的年变化量,应符合 4.5 要求。

色温表的性能符合第 4 章、第 5 章要求者,给出检定证书;否则给出检定不合格通知书。

6.5 检定周期

色温表的检定周期一般不超过1年,每次送检应带上次检定证书。

附录A

升温滤光片与标准灯组合,透射光分布温度的计算

按国际照明委员会 (CIE) 关于光源分布温度的定义,若某光源在波长范围 $[\lambda_1, \lambda_2]$ 内的光谱辐射照度 (或相对光谱功率分布) 测得为 $E_{\lambda}(\lambda)$,并与某一温度下黑体的光谱功率分布近似,则该光源在该波长范围内的分布温度值的计算步骤如下:

$$A(\alpha, T) = \int_{\lambda_1}^{\lambda_2} \left[1 - \frac{E_{\lambda}(\lambda)}{\alpha P_{\lambda}(\lambda, T)} \right]^2 d\lambda \rightarrow Min$$
 (A1)

式中: $A(\alpha,T)$ ——被测光源与黑体源相对光谱分布偏差的平方和(积分值);

 $P_{\lambda}(\lambda,T)$ ——黑体的光谱功率分布,由 Planck 公式给出:

$$P_{\lambda}(\lambda, T) = c_1 \lambda^{-5} \left[\exp \left(\frac{c_2}{\lambda T} \right) - 1 \right]^{-1}$$
 (A2)

T----黑体的温度;

α--调整常数;

 $c_2 = 1.438 \ 8 \times 10^{-2} \,\mathrm{m} \cdot \mathrm{K}_{\odot}$

适当选取 α 和 T 的值,当使得上式积分值 $A(\alpha, T)$ 为最小值 (Min) 时的 T 的数值,就是所求的分布温度值。将式 (A1) 对 α 求偏导数,并根据极值条件,则解得:

$$\alpha = \frac{S(T)}{M(T)} \tag{A3}$$

式中:

$$M(T) = \int_{\lambda_1}^{\lambda_2} E_{\lambda}(\lambda) / P_{\lambda}(\lambda, T) d\lambda$$
 (A4)

$$S(T) = \int_{\lambda}^{\lambda_2} E_{\lambda}^2(T) / P_{\lambda}^2(\lambda, T) d\lambda$$
 (A5)

此时 $A(\alpha, T)$ 对参数 α 取得极小值, 用B(T) 表示即为:

$$B(T) = \int_{\lambda_{i}}^{\lambda_{2}} \left[1 - \frac{M(T)E_{\lambda}(\lambda)}{S(T)P_{\lambda}(\lambda,T)} \right]^{2} d\lambda$$
 (A6)

选取不同的 T, 当B(T)再取极小值时,此时的 T 就是所求的分布温度值 T_d 了。对白炽钨丝灯和可见区,一般取 λ_1 = 400 nm, λ_2 = 700 nm; 计算的波长间隔一般取 5 nm或 10 nm。被测光源与黑体光谱功率分布的最小均方根偏差 $\sigma(\%)$ 为:

$$\sigma = \left\{ \frac{1}{n} \sum_{\lambda=\lambda_{1}}^{\lambda_{2}} \left[1 - \frac{M(T_{d}) E_{\lambda}(\lambda)}{S(T_{d}) P_{\lambda}(\lambda, T_{d})} \right]^{2} \right\}^{\frac{1}{2}} \times 100$$
 (A7)

式中: n——求和计算的项数。

式(A1)~(A6)即为 CIE 所定义的分布温度值的计算公式。

对升色温滤光片与分布温度标准灯组合后透射光的情况, $E_{\lambda}(\lambda)$ 为标准灯光谱功率分布与升温片光谱透射比 $\tau(\lambda)$ 的乘积,即:

$$E_{\lambda}(\lambda) = \tau(\lambda) \varepsilon(T_{S}) c_{1} \lambda^{-5} \exp(-\frac{c_{2}}{\lambda T_{S}})$$
 (A8)

式中: T_s ——标准灯的分布温度;

 $\varepsilon(T_s)$ ——比例因子,与波长无关。

式(A8)中,标准灯在可见区的光谱功率分布使用了简化的 Wien 公式。

由蓝(410~500)nm、红(595~670)nm 两波长范围所确定的分布温度值则由下式 计算:

$$B(T) = \int_{410 \text{ nm}}^{500 \text{ nm}} \left[1 - \frac{M(T)E_{\lambda}(\lambda)}{S(T)P_{\lambda}(\lambda,T)}\right]^{2} d\lambda + \int_{595 \text{ nm}}^{670 \text{ nm}} \left[1 - \frac{M(T)E_{\lambda}(\lambda)}{S(T)P_{\lambda}(\lambda,T)}\right]^{2} d\lambda$$
(A9)

式中:

$$M(T) = \int_{410 \text{ nm}}^{500 \text{ nm}} E_{\lambda}(\lambda) P_{\lambda}^{-1}(\lambda, T) d\lambda + \int_{595 \text{ nm}}^{670 \text{ nm}} E_{\lambda}(\lambda) P_{\lambda}^{-1}(\lambda, T) d\lambda$$
 (A10)

$$S(T) = \int_{400 \text{ mm}}^{500 \text{ nm}} E_{\lambda}^{2}(\lambda) P_{\lambda}^{-2}(\lambda, T) d\lambda + \int_{505 \text{ mm}}^{670 \text{ nm}} E_{\lambda}^{2}(\lambda) P_{\lambda}^{-2}(\lambda, T) d\lambda$$
 (A11)

由绿(505~590)nm、红(595~670)nm 两波长范围所确定的分布温度的计算公式与上类同。计算时的波长间隔均取 5 nm。

附录B

检定证书格式 (背面)

检定结果

标₹	隹值	色温表示值/K									
77 /V	1/ <i>T</i> _s	(b)	r)挡	(g/r) 挡							
$T_{\rm s}/{ m K}$	/μrd	T ₁ /K	$\Delta M/\mu \mathrm{rd}$	T ₁ /K	$\Delta M/\mu rd$						
2 000	500.0										
2 200	454.5										
2 400	416.7										
2 600	384.6										
2 800	357.1										
3 000	333.3										
3 200	312.5										
3 400	294.1										
3 600	277.8										
3 800	263.2										
4 000	250.0										
4 500	222.2										
5 000	200.0										
5 500	181.8										
6 000	166.7										
6 500	153.8										
7 000	142.9										
7 500	133.3										
8 000	125.0										
8 500	117.6										
9 000	111.1										

按规定条件检定,该色温表性能如下:

1. 外 观:

2. 示值偏差:

3. 重 复 性:

4. 线性偏差:

5. 方向性偏差:

6. 年稳定性:

注:色温表只适用于测量光谱功率分布与黑体相近的光源,不宜用于光谱分布与黑体相差较大的光源。

附录 C

不确定度分析

被检色温表不确定度的主要来源有:标准光源本身和检定中引入的不确定度。

C.1 标准光源本身的不确定度

量值 \leq 3 400 K 的范围由二级分布温度标准灯确定,由分布温度标准灯检定规程给出;量值 > 3 400 K 的范围由二级标准灯与升温滤光片灯组合后的透射光确定,由高色温标准建标报告给出。其对应的标准不确定度为 u_1 ,列于表 C.1 中。估计 $\sigma(u_1)/u_1 \approx 0.2$,自由度 $\nu_1 \approx 12$ 。

- C.2 检定中引入的不确定度
- C.2.1 灯电流测控: 其扩展不确定度为 0.2%,按均匀概率密度分布估计,由此引起分布温度的标准不确定度为 u_2 ,其值也列于表 C.1 中。估计 $\sigma(u_2)/u_2\approx 0.1$,自由度 $\nu_2\approx 50$ 。
- C.2.2 示值的 A 类标准不确定度:根据多次检定实践得到,约为 0.3 Mireds,由此换算为分布温度的差值对蓝红比挡为 u_3 。估计 $\sigma(u_3)/u_3\approx 0.2$,自由度 $v_3\approx 12$ 。
- C.2.3 背景杂光: 引起蓝红比的变化估计 $\leq 0.2\%$, 由此换算为分布温度的差值为 u_4 。估计 $\sigma(u_4)/u_4 \approx 0.25$, 自由度 $\nu_4 \approx 8$ 。

序	who ARE	₩ . □		自由度							
序号 j	来源	符号	2 400	2 856	3 200	4 500	5 500	6 500	7 500	符号	数值
1	标准光源	u_1	5 K	6 K	8 K	15 K	22 K	30 K	40 K	ν,	12
2	标准灯电测	u_2	2	2.3	3.1	5.7	8.5	12	16	ν_2	50
3	示值 (A 类)	u_3	2	2.5	3	6	9	12	17	ν ₃	12
4	背景杂光	u_4	1.1	1.6	2	4	7	9	13	ν_4	8
É	合成标准不确定度 (b/r 挡)	$u_{\scriptscriptstyle c}$	5.9	7.1	9.3	18	26	36	48	$\nu_{ m eff}$	21 ~ 23
	置信因子	t _{0.99}	2.85	2.85	2.85	2.85	2.85	2.85	2.85		
扩展	展不确定度(b/r 挡)	U/K	17	21	27	51	75	110	140		
扩展	展不确定度(g/r挡)	U/K	18	22	30	60	85	120	150		

表 C.1 被检色温表的不确定度来源

C.3 被检色温表的合成标准不确定度 u。

综合上述分析,认为各分量大致相互独立,即可算得(b/r)挡合成标准不确定度 $u_{\rm e}$ 及有效自由度 $\nu_{\rm eff}$ 。

C.4 被检色温表的扩展不确定度 U

在得到了合成标准不确定度 u_c 及其有效自由度 v_{eff} 以后, 取 p=0.99, 查表得出对

应 $t_{0.99}(\nu_{\rm eff})$ 的值,按公式 $U=t_{0.99}(\nu_{\rm eff})\times u_{\rm e}$ 计算出它(b/r)挡的扩展不确定度,分别列于表 C.1。用同样的方法,可评估出被检色温表(g/r)挡的扩展不确定度,也列于表 C.1中(最后一行),其值比(b/r)挡的扩展不确定度大一些。

被检色温表的不确定度主要取决于检定用的标准光源。

附录D

相关说明

对于大于 $3\,400\,K$ 的范围,用标准光源加升温滤光片的透射光复现,对理想的升温滤光片,其光谱透射比 $\tau(\lambda)$ 在可见波长范围内应满足如下的随波长变化关系:

$$\tau(\lambda) = k \times \frac{\exp\left(\frac{c_2}{\lambda T_1}\right) - 1}{\exp\left(\frac{c_2}{\lambda T_2}\right) - 1}$$
(D1)

式中: k----比例常数;

λ——波长。

加此片子后,分布温度由 T_1 升为 T_2 。但实际上我们经过试制能得到的升温片,其 $\tau(\lambda)$ 很难完全满足这个条件,而有一定的偏离。因此标准灯加此片子后,透射光的光谱功率分布对黑体分布有一定的偏离。这就引起了透射光相关色温度值 T_a ,分布温度 $T_d(b/r)$ 和 $T_d(g/r)$ 在数值上也有较大的差异,特别是后两者的差异更大。

在色温表检定中,如果对(b/r)挡与(g/r)挡均用色温 $T_{\rm o}$ 值作标准,这不仅引入了隐藏的系统误差,而且在换升温滤光片时,还会出现示值不能平滑衔接的问题。这次修订规程从色温表测量的是"分布温度"而不是色温的实际情况出发,分别改用(b/r)和(g/r)所确定的分布温度值 $T_{\rm a}$ (b/r)和 $T_{\rm a}$ (g/r)。